
The PageUnit Framework
A User Guide

Ian F. Darwin, http://www.darwinsys.com/

This document is Copyright 2006, 2015, 2016 by Ian F. Darwin,
http://darwinsys.com/ Distributed under the CC-BY Attribution license 4.0.

Introduction
PageUnit is an open-source testing framework for testing web applications. We offer the following
draft documentation in hopes that it will be found useful in describing the easy-to-use features of this
web testing framework:

• Very simple input language

• No XML (this is a feature!)

• Small footprint – only a few Jar files (7 at last count)

• Fetch most pages by relative URL; host and port can be specified in several ways

• Match text in whole page or in selected HTML elements (text or regex match)

• Find link or form, fill in form parameters, submit form or link

• Support for Java EE login screens

• Built-in link checker

• Extensibility by Java-based plug-in mechanism.

There is a web site for the project, at http://pageunit.darwinsys.com/ .

Input Language
The input language is documented in the following table. Each non-comment line has one command
and zero or more operands, as shown in the table. Optional operands are denoted by […].

Table 1. The PageUnit Commands

Cmd Operands Meaning

Anything Comment line, printed but
ignored.

A username [password] run As, e.g., set new user

B URL Base URL; Change base of url e.g.
http://www.foo.com/

C config-name Choose one tuple
{username,pass,baseurl,port}
from a Config (preferred over
B,A,H,P) (not working yet)

D t|f Debugging

1

http://darwinsys.com/
https://creativecommons.org/licenses/by/4.0/
http://pageunit.darwinsys.com/
http://www.foo.com/

Cmd Operands Meaning

E any Echo operands to standard
output

F formName find form in page

G url GoTo link found by L

H hostname Set Hostname for subsequent
tests

I (unused) Reserved for 'IsItThere?' (HEAD
HTTP-method test)

J URL Get Java EE “container managed
login” page

K (unused) -

L text Locate Link in page containing
text

M regex Match regex in current page

N - New browser session (discard
previous)

O port Hard-code pOrt number (see H
above)

P rURL Get Page

Q (unused) -

R name=value set paRameter in form

S \[buttonName] Submit form

T tag text At least one tag of the given class
in the current page must contain
the text.

U (unused) Reserved for “timeoUt and other
options”

V URL Verify Links - Run Link Checker

W (unused) -

X className Add plug-in

Y className Remove plug-in

Z (unused) -

2

Cmd Operands Meaning

= name value Set variable for use in other
commands (e.g., E, R, …); value
must not contain \ or $
characters.

< filename Proposed feature: file inclusion

Variables
Variables can be set at any time with the = command, and remain in effect for the run (even across
multiple input files). Operands should not be quoted, but must be set off from the variable name by a
space character. Variable substitution occurs in all input lines, on all non-null text following the
command; the command’s operands need only be valid after substitutions are done. Variables are
substituted by use of ${…}, for example:

= testerName Robin Smith
E Test run by ${testerName}

The following variables are pre-defined; their names are in all capitals:

Table 2. PageUnit Pre-defined variables

Name Meaning Set By

USER User name for login Properties, C, or A

PASS Password for login Properties, C, or A

HOST Host name (or IP) Properties, C, or H

PORT Port number Properties, C, or O

Variables as Extraction Rules: The Match command (M) sets groups as variables. The variable M0 is
set to whatever matched; if the regex pattern contains capture groups, they are set in M1, M2, … Mn.
This allows you to select values in one page and use them in another, for example, find the primary
key assigned to a newly-inserted record, and use it in a search.

Building With Maven
PageUnit is in Maven Central so you don’t have to build it if you don’t want to!

PageUnit is available in source code from the github repository. Check out the code and build it; all Jar
files are downloaded. Java 8 is the current Java and is recommended. The GitHub repository is at
http://github.com/IanDarwin/pageunit.git

3

http://github.com/IanDarwin/pageunit.git

Build, test and package it using Maven in the normal way: mvn package install

Optional: Create a file called “.pageunit.properties” in your home directory (~ or $HOME on UNIX; on
other Oses, whatever Java thinks is ${user.home}. It should contain these default parameters:
login=someUserName password=anyOldPassword host=localhost port=8080 Of course, the login and
password should be those to log you in to the “main” web application that you want to test, and the
“host” and “port” should be the server’s web address.

Getting Started with JUnit
PageUnit is in Maven Central. All you have to do to use it with Maven is add this to the <dependencies>
section of your pom.xml:

<dependency>
 <groupId>com.darwinsys</groupId>
 <artifactId>pageunit</artifactId>
 <version>1.0.1</version>
</dependency>

Then you can write a test like this one:

import org.junit.Test;

import pageunit.ScriptTestCase;

public class PageUnitDemoTest {

 @Test
 public void demo() throws Exception {
 new ScriptTestCase("src/test/pageunit/oreilly.txt").run();
 }
}

Run it as usual!

Getting Started under Eclipse
Check out the git repo “pageunit” as above, as an Eclipse project. This will create a Java project named
pageunit. Then, create a second Java project called SiteTest (substituting the name of your site); have it
depend on the pageunit project so it can find the needed class files. Create a non-source folder therein
called “tests”, and create at least one test file thereunder (a good minimal test file that will allow you to
run the test framework is a file called tests.txt (the filename extension txt is what it looks for)
containing just the one line:

4

This will be a test file.

Next, make a Java Application run configuration (Run→Run→New Configuration); set the “main class”
name to pageunit.PageUnit, and change the “Run in” directory by adding “/tests” to it. Now you should
be able to run the new Test Configuration and see a message with some text like “0 tests run, 0
failures”.

Getting Started Command Line Usage
Get the Git project as above. Build it with one extra step:

mvn package assembly:single

This creates an ”uber jar” with all needed dependencies in one jar file, which can be run with java -jar.
You probably want to copy this to your home directory:

mkdir ~/lib
cp target/pageunit-1.0.1-SNAPSHOT-jar-with-dependencies.jar ~/lib

You don’t have to put it in ~/lib, but the default script we provide assumes so. Either way, you should
then add the directory with the scripts dir to your PATH setting, or copy the script into a directory
that’s in your PATH. Assuming you’ve done both steps (and/or edited things to match), you should be
able to say:

pageunit search.txt

and see the output showing success.

Contributing
This is an open source project, and contributions from users are welcome. Code patches should be in
the form of “git diff -u” or Eclipse Team→Create Patch. The web site and thus the documentation are in
a different git repo; sadly, documentation patches should be sent in email for now. There is a lot of
work still to do. For ideas on some smaller things that need doing, see the TODO file in the docs
directory; for some larger ideas, see the “Future Directions” of the academic report.

5

	The PageUnit Framework: A User Guide
	Introduction
	Input Language
	Variables

	Building With Maven
	Getting Started with JUnit
	Getting Started under Eclipse
	Getting Started Command Line Usage
	Contributing

